Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types

نویسندگان

  • Mairi M. R. Best
  • Susan M. Kidwell
چکیده

—Bivalve death assemblages from subtidal environments within the tropical Bocas del Toro embayment of Caribbean Panama permit a test of the extent to which levels of damage are determined by the intrinsic nature of shell supply (proportion of epifaunal species, thick shells, calcitic shells, low-organic microstructures), as opposed to the extrinsic postmortem environment that shells experience. Only damage to interior surfaces of shells was used, to ensure that damage was unambiguously postmortem in origin. We find that facies-level differences in patterns of damage (the rank order importance of postmortem encrustation, boring, edge-rounding, fine-scale surface degradation) are overwhelmingly controlled by environmental conditions: in each environment, all subsets of the death assemblage present the same damage profile. The composition of shell supply affects only the intensity of the taphonomic signature (i.e., percentage of shells affected), and only in environments containing hard substrata (patch reefs, Halimeda gravelly sand, mud among patch reefs). In these environments, epifauna, whether aragonitic or calcitic and whether thin or thick, exhibit significantly higher damage than co-occurring infauna, probably due to the initial period of seafloor exposure they typically experience after death. Thick shells (.0.5 mm), regardless of life habit or mineralogy, are damaged more frequently than thin shells, probably because of selective colonization by fouling organisms. Calcitic shells show no consistently greater frequency of damage than aragonitic shells, and high-organic microstructures yield mixed patterns. Taphofacies surveys in such depositional systems could thus be confidently based on any subset of the fauna, including diagenetically residual assemblages of calcitic shells and thickshelled molds. Further tests are needed to determine whether the higher levels of damage observed on some subsets of shells are a consequence of greater time-averaging (thus lower temporal resolution), greater exposure time, preferential attack (potential bias in relative abundance), or some combination of these. Paleobiologically, however, the implication is that ecological subsets of bivalve assemblages are not isotaphonomic, either in tangible damage or in probable bias, within hard-substrate environments, although they may be within soft-sediment environments. In actualistic studies, targeting broad classes of taxa for comparison across environments maximizes our ability to extrapolate taphonomic guidelines into the fossil record, where life habits, skeletal types, and shallow subtidal habitats have dramatically different patterns of abundance and deployment. Mairi M. R. Best and Susan M. Kidwell. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected] Accepted: 11 June 1999

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition

—Contrary to the geological stereotype of pure-carbonate reef platforms, approximately 50% of shallow shelf area in the Tropics is accumulating siliciclastic and mixed siliciclastic-carbonate sediments. Taphonomic characterization of these settings is thus essential for assessing variation among major facies types within the Tropics, as well as for eventual comparison with higherlatitude settin...

متن کامل

Carbonate Preservation in Shallow Marine Environments: Unexpected Role of Tropical Siliciclastics

Coordinated taphonomic, geochronologic, and geochemical studies of bivalve death assemblages and their sedimentary environments of San Blas, Caribbean Panama, permit us to identify the major factors controlling skeletal degradation in mixed carbonate-siliciclastic tropical shelf sediments. Ten sites were studied along environmental gradients including water nutrients, grain size, and sediment c...

متن کامل

Coralline red algae from the Lower Pliocene Shagra Formation of Wadi Wizer, Red Sea coast, Egypt: Biofacies analysis, systematics and palaeoenvironmental implications

Coralline red algae are highly abunadant and well diversified in the well exposed carbonate deposits of the Lower Pliocene Shagra Formation at Wadi Wizer, Red Sea coast, Egypt. Lithostratigraphically, the Shagra Formation unconformably overlies the Late Miocene Marsa Alam Formation and underlies the Quaternary deposits. This carbonate facies is dominated by different assemblage of coralline red...

متن کامل

Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some ...

متن کامل

An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system

The role of bivalve mariculture in the CO2 cycle has been commonly evaluated as the balance between respiration, shell calcium carbonate sequestration and CO2 release during biogenic calcification. However, this approach neglects the ecosystem implications of cultivating bivalves at high densities, e.g. the impact on phytoplankton dynamics and benthic−pelagic coupling, which can significantly c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000